77 research outputs found

    Smoothing Policies and Safe Policy Gradients

    Full text link
    Policy gradient algorithms are among the best candidates for the much anticipated application of reinforcement learning to real-world control tasks, such as the ones arising in robotics. However, the trial-and-error nature of these methods introduces safety issues whenever the learning phase itself must be performed on a physical system. In this paper, we address a specific safety formulation, where danger is encoded in the reward signal and the learning agent is constrained to never worsen its performance. By studying actor-only policy gradient from a stochastic optimization perspective, we establish improvement guarantees for a wide class of parametric policies, generalizing existing results on Gaussian policies. This, together with novel upper bounds on the variance of policy gradient estimators, allows to identify those meta-parameter schedules that guarantee monotonic improvement with high probability. The two key meta-parameters are the step size of the parameter updates and the batch size of the gradient estimators. By a joint, adaptive selection of these meta-parameters, we obtain a safe policy gradient algorithm

    Online Learning with Off-Policy Feedback

    Full text link
    We study the problem of online learning in adversarial bandit problems under a partial observability model called off-policy feedback. In this sequential decision making problem, the learner cannot directly observe its rewards, but instead sees the ones obtained by another unknown policy run in parallel (behavior policy). Instead of a standard exploration-exploitation dilemma, the learner has to face another challenge in this setting: due to limited observations outside of their control, the learner may not be able to estimate the value of each policy equally well. To address this issue, we propose a set of algorithms that guarantee regret bounds that scale with a natural notion of mismatch between any comparator policy and the behavior policy, achieving improved performance against comparators that are well-covered by the observations. We also provide an extension to the setting of adversarial linear contextual bandits, and verify the theoretical guarantees via a set of experiments. Our key algorithmic idea is adapting the notion of pessimistic reward estimators that has been recently popular in the context of off-policy reinforcement learning

    Stochastic Variance-Reduced Policy Gradient

    Get PDF
    In this paper, we propose a novel reinforcement- learning algorithm consisting in a stochastic variance-reduced version of policy gradient for solving Markov Decision Processes (MDPs). Stochastic variance-reduced gradient (SVRG) methods have proven to be very successful in supervised learning. However, their adaptation to policy gradient is not straightforward and needs to account for I) a non-concave objective func- tion; II) approximations in the full gradient com- putation; and III) a non-stationary sampling pro- cess. The result is SVRPG, a stochastic variance- reduced policy gradient algorithm that leverages on importance weights to preserve the unbiased- ness of the gradient estimate. Under standard as- sumptions on the MDP, we provide convergence guarantees for SVRPG with a convergence rate that is linear under increasing batch sizes. Finally, we suggest practical variants of SVRPG, and we empirically evaluate them on continuous MDPs

    Adaptive Batch Size for Safe Policy Gradients

    Get PDF
    International audiencePolicy gradient methods are among the best Reinforcement Learning (RL) techniques to solve complex control problems. In real-world RL applications, it is common to have a good initial policy whose performance needs to be improved and it may not be acceptable to try bad policies during the learning process. Although several methods for choosing the step size exist, research paid less attention to determine the batch size, that is the number of samples used to estimate the gradient direction for each update of the policy parameters. In this paper, we propose a set of methods to jointly optimize the step and the batch sizes that guarantee (with high probability) to improve the policy performance after each update. Besides providing theoretical guarantees, we show numerical simulations to analyse the behaviour of our methods

    Policy Optimization as Online Learning with Mediator Feedback

    Get PDF
    Policy Optimization (PO) is a widely used approach to address continuous control tasks. In this paper, we introduce the notion of mediator feedback that frames PO as an online learning problem over the policy space. The additional available information, compared to the standard bandit feedback, allows reusing samples generated by one policy to estimate the performance of other policies. Based on this observation, we propose an algorithm, RANDomized-exploration policy Optimization via Multiple Importance Sampling with Truncation (RANDOMIST), for regret minimization in PO, that employs a randomized exploration strategy, differently from the existing optimistic approaches. When the policy space is finite, we show that under certain circumstances, it is possible to achieve constant regret, while always enjoying logarithmic regret. We also derive problem-dependent regret lower bounds. Then, we extend RANDOMIST to compact policy spaces. Finally, we provide numerical simulations on finite and compact policy spaces, in comparison with PO and bandit baselines

    Gradient-Aware Model-based Policy Search

    Get PDF
    Traditional model-based reinforcement learning approaches learn a model of the environment dynamics without explicitly considering how it will be used by the agent. In the presence of misspecified model classes, this can lead to poor estimates, as some relevant available information is ignored. In this paper, we introduce a novel model-based policy search approach that exploits the knowledge of the current agent policy to learn an approximate transition model, focusing on the portions of the environment that are most relevant for policy improvement. We leverage a weighting scheme, derived from the minimization of the error on the model-based policy gradient estimator, in order to define a suitable objective function that is optimized for learning the approximate transition model. Then, we integrate this procedure into a batch policy improvement algorithm, named Gradient-Aware Model-based Policy Search (GAMPS), which iteratively learns a transition model and uses it, together with the collected trajectories, to compute the new policy parameters. Finally, we empirically validate GAMPS on benchmark domains analyzing and discussing its properties

    Stochastic Variance-Reduced Policy Gradient

    Get PDF
    In this paper, we propose a novel reinforcement-learning algorithm consisting in a stochastic variance-reduced version of policy gradient for solving Markov Decision Processes (MDPs). Stochastic variance-reduced gradient (SVRG) methods have proven to be very successful in supervised learning. However, their adaptation to policy gradient is not straightforward and needs to account for I) a non-concave objective function; II) approximations in the full gradient computation; and III) a non-stationary sampling process. The result is SVRPG, a stochastic variance-reduced policy gradient algorithm that leverages on importance weights to preserve the unbiasedness of the gradient estimate. Under standard assumptions on the MDP, we provide convergence guarantees for SVRPG with a convergence rate that is linear under increasing batch sizes. Finally, we suggest practical variants of SVRPG, and we empirically evaluate them on continuous MDPs

    Stochastic Variance-Reduced Policy Gradient

    Get PDF
    International audienceIn this paper, we propose a novel reinforcement-learning algorithm consisting in a stochastic variance-reduced version of policy gradient for solving Markov Decision Processes (MDPs). Stochastic variance-reduced gradient (SVRG) methods have proven to be very successful in supervised learning. However, their adaptation to policy gradient is not straightforward and needs to account for I) a non-concave objective function; II) approximations in the full gradient computation; and III) a non-stationary sampling process. The result is SVRPG, a stochastic variance-reduced policy gradient algorithm that leverages on importance weights to preserve the unbiasedness of the gradient estimate. Under standard assumptions on the MDP, we provide convergence guarantees for SVRPG with a convergence rate that is linear under increasing batch sizes. Finally, we suggest practical variants of SVRPG, and we empirically evaluate them on continuous MDPs
    • …
    corecore